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ABSTRACT 

Let ~ be the span of the Haar function {h~:J~D} in L p (1 < p < ~) 
endowed with L p norm. Then for any finite set D, the spaces A~D and ~v are 
Kp- isomorphic where Kp depends on p only. 

In [G.G] Gamlen and Gaudet consider subspaces o f L  ° (1 < p < ~ )  which 

are generated by an infinite subset of  the Haar basis. 

Using the Banach space decomposition principle ofPelczynski, Gamlen and 

Gaudet proved that l p and L p are the only Banach spaces which can be 

produced in this way. 
The argument used below to prove the corresponding finite dimen- 

sional result (Theorem 1) is based on the methods of  B. Maurey, cf. 

[Ma, Section 4]. 

TI-mOREM 1. There exists Kp > 0 such that the span X ° o f  any finite 
subset o f  the Haar basis in L°[O, 1] (1 < p < ~ )  is Kp-isomorphic to 

[ ~ m  X ~ • 

Subsets of  the Haar basis are given by a collection ~ of  dyadic intervals. 

To handle such collections properly we will introduce generations: 

For I E ~ we let 

Gl(l ] D) = { J E ~ : J ~ I, J maximal}. 

Having defined Gl(l I ~ ) , . . . ,  Gn-1(I ] 9 )  we put 

Received November 29, 1987 and in revised form May 25, 1988 

212 



Vol. 63, 1988 P. F. X. MULLER 213 

G.(I] 9)-- U G,(J 1 9). 
JEG n _ i(II ~) 

For arbitrary collection ~" of dyadic intervals we denote U~,~,. J by J * .  
When no confusion is possible we will write G~(I) instead of G~(I [ 9), and G. 
instead of G.([0, 1][ 9). For 1 < p < oo we denote by X~ the span of the Ham" 
functions {h~: J 6  9} equipped with L p norm. 

Givenfffi Zje~ a,hj then we put 

f( U f Ux~. = 2, a] h 2 dt. 

Xg will denote the span of the Haar functions {h j :  J E 9} equipped with the 

n o r m  II IIx~. 
We let (fl, ~ ,  P) be a probability space and we let (~'~.).eN be an increasing 

sequence of finite fields such that 

~ / ~ = ~ .  
n - - I  

(E.(-)).eM denote the conditional expectations with respect to ( ~ ) .  We 
introduce the spaces 

HP[(.ff.')]:={fELP(f~,~ff , P)" f s(f)P < ~}  , 

endowed with the norm 

where 

II fll~c.~l = ( f  S( f )PdP)  up 

( ~  (En(f )  -- En_i( / ))2)  1/2 (t). (Sf)(t) ffi fl_, 

Important to us are the following results: 

THnOR~M (Burkholder). Let 1 < p < oo, then there exists Cp > 0 such that 
for fELp(~, St, p) 

[[ flip =< [[ f[[ff([1,)l < C p  [[ f l ip .  
c, 



214 RESULT OF GAMLEN AND GAUDET Isr. J. Math. 

An immediate consequence of Burkholder's theorem is the follow- 
ing: 

PROPOSITION 2. For 1 < p < 0o there exists Cp > 0 with the following 
property: 

For any sequence ( ~r ) of increasing finite fields, which is eventually constant, 
the spaces HP[($r~)] and l~mn't~t,)l are C~-isomorphic. 

We will also use the following: 

TI-IEOREM (E. M. Stein). Let 1 < p < 00, then there exists Cp > 0 such that 
for any sequence ( f,)~LP(~, P) 

f (Y~ IE j~ I2 fadP<C,  f (Y~ If. I2)P/2dP. 

LEMMA 3. For 1 < p < 00 there exists Cp > 0 such that for any finite 
collection ~ of dyadic intervals there exist N E N and pairwise disjoint collec- 
tions { ~n }~ <.iv of dyadic intervals such that 

N 
(1) = Un_, 
(2) For each m ~ N and I ~ ~,, 

(a) IG*(I ] ~m)l < I/I; 
(b) either IG*(/I  m)l > 1II/2 
or ]G~*(I ] ~m)] -- 0. 

(3) The Banach-Mazur distance between the space A~ and (Z A~. )t, is less 
than Cp. 

PROOF. We first decompose ~ into two collections R and B each of which 
satisfies condition (a). 

Let . ~ = { I E ~ ' G ~ * ( I [ ~ ) =  I/I}; for I ~  we pick any interval in 
G~(I [ ~)  which we call R(I). Then we simply set 

R := (.) {R(I):IE.~},  

B : = ~ \ R .  

Now for I E B the following holds: 
I \G*(I]B)  contains the intersection of a nested family of subsets of R, 

hence it has positive measure. 
The same statement holds with the roles of R and B interchanged, hence for 

I ~R,  I \ G*(I I R) has positive measure. 
From now on we assume that ~ already satisfed (a). 
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We now decompose ~ inductively. 
Step 0 

J~'l ~ "  { I E $  :IG*(I ]D)I < 1II/2}, 

K~ ffi {I E ~:  there exists J E jt~ and J D I and I # J},  

If K~ is empty we stop. If K~ is nonempty we continue: 
Step 1 

J 2 =  ( l E g ,  :lG,*(I I ~)t  <= 1II/2}, 

Ks = {IEK~: thereex i s t sJE52 a n d J  ~ I a n d J  # I}, 

~2= K, \ K2. 

Suppose Kt . . . .  , K., ~l ,  • • •, ~ .  are constructed. IfK~ is empty we stop. If 
K. is nonempty we continue. 

Step n 

o¢.+, = {I EK.:IG,(I I ~)I <= 1II/2}, 

K.+l = {IEK.:  there exists J E J . + t and J ~ I and J # I}, 

~n+| =KnkKn+l. 

Obviously {~.} satisfies (1) and (2); it remains to check (3). 
Indeed by construction for each m E N and I E ~m : 

~ .  III 
I \  U > 

m + 2 < n  2 

Now pick f E  X~ and put 

f~= X Y~ a~h, 
n>-I J ~ - ~ , - i  

and f2= Y. ~ alh,.  
n >- 1 JE~z~ 

By the unconditionality of the Haar basis in L p we get 

II f II• > Cp( N A IIg + II A IIg). 

Moreover 
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f,  
that 

RESULT OF GAMLEN AND GAUDET 

II A Ih¢ >-- c ,  Z ,,, , , ,] 
n 1 J E ~  

~ a 2 

n>.l \ JE~ '~  

ajhj ~ >2Co 2 2 , 
n>l  J E ~  

may be treated the same way, hence there is a constant Cp > 0 such 

Isr. J. Math. 

JE~m 

on the other hand for 1 _-< p _-< 2, Clarkson's inequality implies 

J E g .  

By duality we get the desired isomorphism for all 1 < p < oo. 
The rest of the paper is used to show that X~ is isomorphic to a certain 

HP[(J,)] space, provided @ satisfies condition (2) of Lemma 3. 
The structure of @ must be reflected by ( ~ )  if we want the norm of the 

isomorphism to be independent of @. 

DEFINITION 4. Let @ be a finite collection of dyadic intervals, such that 
for I E @ ,  Ill - [G*(I, @)l > 0 .  We let J0ffi {[0, 1], 0 } .  For n > 1, ~ is 
defined to be the algebra generated by {.~,_ l U Gn([0, 1], @)}. 

The sequence ( ~ )  will be called the filteration induced by @. 

For I E Gm- t we put 

@(1) := { f  : l ~ R, f f = o, f is ~ measurable} , 

X(l) := span{ I hj I: JEG,(I I @)}. 

L~MMA 5. There exists C > 0 with the following property. I f  0 < 
I I I - I G~*(I [ @)l < [I I/2, there exists an isomorphism Tt: X(I)- ,  @(I) such 
that,for I ~ p <-_ oo and fEX(1), 

II fU 
""~  < II T, fllp < C. II flip. 
C 



VOI. 63, 1988 P.F.X. MOLLER 217 

PRoof (cf. [Ma], Lemma 4.10). 
Step 1. Define m0E N by the relation 

II----Ll < III - IG?(I]~)I <III  
2.2mo 2"~ 

There exist pairwise disjoint collections ~ c G~(1), 1 <-_ i <ffi mo such 
that I,.J~ ~--G~(I) .  Moreover, we can choose them in such a way 
that for F i : = ~ * ,  1 <i<mo and F,~+t:=I\G~(1) the following 
holds: 

I F l l / l I I  = ½, 

IF~+~l/IF~l =½ for 1 =<i--<mo- 1, 

+ --< IF~.l - 2 "  

By ~ we denote the algebra generated in I by {FI,. . .  ,F,~+I}. For a 
measurable function f :  I --- R we define the shift operator D~ as follows: 

D,f/r l :  = 0, 

Dlf/F~:=f/Fi-~ for2----< i < too+ 1. 

We easily observe here that for 1 < p < oo and f ~  X(I) 

II f l ip /4  _-< II D~fllp --< 4 II f i b .  

Finally we define Ut by 

U , f - - f -  E ( f  I ~,) + D,(E(f[ W,)). 

• For 1 ffi< p ffi< oo, U~ acts as an isomorphism on Lp(l) when restricted to X(1), 
because for f E  X(1) 

~. Ilfll~ =< II u~flb =_<6. II f i b .  

Indeed, the right-hand inequality is clear. The left-hand inequality needs 
two observations. Firstly, it follows from the construction that 

E(U,f[ ~,)ffi D,(F_,(f[ ~z)). 

Secondly, we havefffi U l f +  E( f [  ~ ' t ) -  Dt(E(fl  q,)). Hence, 
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II f l l p ~  II U, f l lp + II E(f[ (6~t)lip + II DI(E(f[ ~,)) l ip 

--< II uifl[, + 5 II E(Uff[  ~,)lip 

=< 6 I! u f f  lip. 

Step 2 (due to G. Schechtman). For f :  I---- R we define/Ii by 

We claim that SF, f-~ 0 implies, for 1 _-< p _-< or: ½11 flip ~ 11 Vlf [[p =< 2 1[ flip. 
Indeed, the right-hand side inequality is obvious, and we need only 

verify the left-hand side inequality. Choose h ~ L  q such that [1 h [[q = 1 and 
S f .h = [[ f[[L'. Let 

F/ :=h -- fF  h art 
, IFll 

We have now 

U h lip =<- 2 II h lip, 

Hence 

Step 3. 

f h f = f h f  and f (h'XF,)---- O. 

1; 
II V~fllp~ 2 ~v~f 

1 

2 I1 flip. 

Fix f 5  X(1) (i.e. f =  Zjec,(l)ajhj). Then we define Pf by 

V , f =  ~, a, Zj. 
JaG~(l) 

Fina l ly  w e  put  

Tt : X(I) ---} D(1) 

f ~ I1"i UtP1f. 
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Steps 1 to 3 show that, for fEX(I ) ,  we have 

U f < II TIf --< C. II f L,  
C 

where C is independent off ,  1 < p < oo, or I. 
Moreover, the construction of T1 is such that Tt fE  D(I), and 7"i is surjective 

and linear. 

PROPOSITION 6. For 1 < p < oo there exists Cp > 0 with the following 
property. Let ~ (with I ~*1 < 1) be a finite collection of dyadic intervals such 
that for I ~ 

(i) either I G,(I [ ~)1 > 111/2 or Gt(I [ ~) = O, 
(ii) I I I - I G*(/[  e )  l > 0. 

Let (St) be the filtration induced by ~,  then the Banach spaces X~ and H p [(~r )] 
are Cp-isomorphic. 

PROOF. We put ~ := ~ td [0, 1]. The isomorphism is defined on each 
interval of ~:  

{L x 
I JEGt(1) 

T: X~ --- HP[(~r~)], 

h.lal}-~{,~, Ti(je~(i)hjaj)} • 

By construction of T the following is easily observed. 

(1) Forf~X2~, [ITI[2/C<-_ [[ Tfl[2_- < Ilfl[2"C. 
(2) For 1 _-< p _-< o0, n E N and f E  Xg., 

Ilfllp __< [I Tfl[p < [[flip "c.  
C 

(3) L e t f  be j r  measurable and let h be ~ +1 measurable with E(h [ ~ )  = 0; 
then E ( f  .h [ar~) = 0 and T - I ( f  • h)  ~- f T - I ( h ) .  

It should be remarked here that T does not satisfy (3). 
In [Ma] Section 4, an argument is given which shows that T -1 : H l [ (~ ) ]  

X~ is bounded. This argument is formulated there only for a very special 
collection of dyadic intervals. Nevertheless, a change of notation makes it 
work in our case too. Property (2) implies that T-~:H2[(ar,)]--,X~ is 
bounded. Now we apply the interpolation theorem for He-spaces (cf. 
[C.W] Theorem D) to conclude that, for 1< p _-< 2, T-~:HP([ar~)]~X~ is 
bounded. 
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Once we know that T: X~ ~ H p [(~)] ,  1 < p < 2, is bounded, we are done 
by duality, because 

(X~)* is X$ 

HP[(~)] * is Hq([~)]  

where 1/p + l/q = 1. 
An application of E. M. Stein's inequality permits us to show that T: X~ 

H p [(.~,)] is bounded. 
The use of this inequality is possible because, for I ~ Gn a n d r e  X(I), I Till  

can be dominated, pointwise, by the sum of conditional expectations of I f l .  
Indeed, the construction of TI shows that 

I 
\ d l  / III 

For the first three terms it is clear that they are dominated by conditional 
expectations. We take 8] ~- ~ N I, 8~ :-- e~ I and 8~ = { ~ ,  I}. 

Only the shift needs further considerations. We will now construct two 
different algebras of sets, both coarser than ~1. 

Let F i , . . . ,  F,,~+ l be the atoms of e~1. For m0 = 2n we put 

84 :----~/{Ft UF2, F3UF4 . . . .  , F2n-~ U F2., F2~+t}, 

. . . . .  F2,  U 

84 and ~f5 will be the algebras which we are going to use. 
We denote by M the multiplication operator induced by the characteristic 

function of the set F2 U F4 U - . .  U F2n. 
Using the abbreviation h = E(Ifl  ] ~¢1) we estimate as follows: 

M(D! h) < 2E(M(DI h) [c¢]) 

< 4E(h - g(D1h) ] ~¢']) 

< 4E(h ] 8~) 

= 4E(Ifl 1 8~); 

D1h - g(Dlh)  < 2E(DIh - g(Dlh)  1 8~) 

_-< 4E(Mh 1 8~) 

< 4E(h ] 8]) 
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---- 4E(If l  I ~f~). 

Summing up, we obtain the following estimate: 

5 

ITffl-_<8 Y~ E(I f l  lSg). 
j - I  

Just what we wanted! 
If  m0 -- 2n + 1, we have to put 
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• l := ~ { F ,  u f~, e3 u F , , . . . ,  F~.+, U F,.+~}, 

• ,~ := ~{F~, F2 u F3 . . . .  ,F2. U F~.+,, ~'2.+2}. 

Finally, M will be the multiplication operator induced by the charac- 

teristic function of  the set F: U/;'4 U • • • U F2, ÷2, otherwise we do the same 
as above. 

It remains to show how we will actually use the above estimate on T~ to 
bound T. 

First, we introduce the global analogues of  8~, 8~ : = d {  8~: I E G. }. 
Given f : - -  Z#E~, athl w e  define 

lEG,, 

Anrf:  = g(rf l  ~ )  - g(r f l  ~,+,). 

The definition of  T gives the estimate 

5 

Y. IA, Tfl2<-_C ~, ~ E(If ,  I I ,~)  ~. 
n j--I  n--I 

Hence we get from Stein's inequalities 

ii r.r iih<..~, ~ c f (~; (r(IA I I "~.))') ' '  
%R,j 

__< f n,j 

=< c,  II f l lb. .  [] 

Theorem 1 follows now from Proposition 6 and Lemma 3. 
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